Relating diameter and mean curvature for submanifolds of Euclidean space

نویسندگان

چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

relating diameter and mean curvature for submanifolds of euclidean space

Given a closed m-dimensional manifold M immersed in R, we estimate its diameter d in terms of its mean curvature H by

متن کامل

RICCI CURVATURE OF SUBMANIFOLDS OF A SASAKIAN SPACE FORM

Involving the Ricci curvature and the squared mean curvature, we obtain basic inequalities for different kind of submaniforlds of a Sasakian space form tangent to the structure vector field of the ambient manifold. Contrary to already known results, we find a different necessary and sufficient condition for the equality for Ricci curvature of C-totally real submanifolds of a Sasakian space form...

متن کامل

Reconstructing Submanifolds of Euclidean Space

A generalization of the crust algorithm is presented that will reconstruct a smooth d-dimensional submanifold of R. When the point sample meets satisfy a minimal density requirement this reconstruction is homeomorphic to the original submanifold. In fact the reconstructed manifold is ambiently isotopic to the original via an isotopy that moves points a small distance. Also, bounds are given com...

متن کامل

Lagrangian Submanifolds of Euclidean Space

We give an exposition of the result that there is no closed exact Lagrangian submanifold L of (C, ω0) where ω0 is the standard symplectic structure. We show that the assertion is equivalent to the statement that the perturbed Cauchy-Riemann equation ∂̄J0u = g for maps u from the unit disc D to C which map the boundary circle ∂D to L has no solution for some function g0. To do this, we follow [1]...

متن کامل

The Mean Curvature Flow for Isoparametric Submanifolds

A submanifold in space forms is isoparametric if the normal bundle is flat and principal curvatures along any parallel normal fields are constant. We study the mean curvature flow with initial data an isoparametric submanifold in Euclidean space and sphere. We show that the mean curvature flow preserves the isoparametric condition, develops singularities in finite time, and converges in finite ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Commentarii Mathematici Helvetici

سال: 2008

ISSN: 0010-2571

DOI: 10.4171/cmh/135